

- ✤ High unmet need, with ~75% of currently recognized rare diseases with no effective treatment → offering significant opportunities for advancements in care
- Policy incentives for R&D in rare diseases have been effective, and focus on rare diseases continues to increase
- Total budget impact of rare disease treatments is steadily rising, whilst pressure on health care budget also increases
- Numerous challenges make research and HTA in rare diseases especially difficult
- Comprehensively understanding these challenges is the first step towards addressing them

(3)

Rare Disease Terminology & Definitions: A Systematic Global Review – published report Value in Health, Sep/Oct 2015

VALUE IN RECOVER TREATING PROPERTY.

 Rare Disease Challenges In Assessment and Appraisal of Diagnostics and Treatments – in progress

(5)

- Stakeholders dealing with rare diseases and their treatments are confronted with special challenges relating to:
 - Understanding the disease
 - Developing effective treatments
 - Demonstrating value-for-money and achieving reimbursement and patient access
 - Equity and societal value consideration
- Some challenges are unique to rare diseases, some are more pronounced in rare diseases
- Too often, stakeholders perceive challenges <u>solely from their</u> <u>perspective</u>

Collaboration across broad range of stakeholders required to address challenges

- Researchers
- Life sciences industry
- Regulators
- HTA agencies
- Public and private payers
- Physicians and other healthcare providers
- Patients and their families
- Patient advocacy organizations

Multi-stakeholder discussion panel

(7)

- Christopher Blanchette, PhD MBA Associate Professor, University of North Carolina, Charlotte, NC, USA & VP, Precision Health Economics, Charlotte, NC, USA
- Ken Redekop, PhD Associate Professor, Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, Netherlands
- Sheela Upadhyaya, Dip Associate Director, Highly Specialised Technologies, NICE, UK
- Janis Clayton, BSc
 VP and General Manager UK & Ireland, PTC Therapeutics Ltd., UK
- Moderator: Sandra Nestler-Parr, PhD MSc MPhil Managing Director, Rare Access, London, UK & Trustee, Alpha-1 UK Support Group, UK

Research-related challenges

Rarity - Low disease frequency				
Disease recognition and diagnosis	Evaluation of treatment effect	Patient recruitment		
 Lack of familiarity with RDs 	 Heterogeneity of disease prognosis 	 Geographic limitations in 		
 Disease heterogeneity 	and treatment effect	patient recruitmentInsufficient coding		
 Lack of established diagnostic criteria 	Selection biasUncertainties	systems Ethical and legal 		
 Misdiagnosis Geographic variation 	related to validated trial outcomes	hurdles		

HTA, reimbursement & access challenges

Observations

Multiple challenges may increase the size of the <u>overall challenge</u>.

- So: c + c = C, and C + c = C

- It's not about the challenges *per se*, but rather about the <u>ultimate</u> <u>goals</u>, which are to:
 - Improve (normalize) the lives of patients with rare diseases in a sustainable manner.
 - Assess the "value" of a RD treatment and make a reimbursement decision...

Overall challenge: Uncertainty about treatment effectiveness

- One overarching challenge is the difficulty in determining if the effectiveness of a treatment is clinically important and statistically significant.
- Various challenges described earlier contribute to this challenge.
- Illustrated by examining the formula to calculate the statistical power of a clinical trial to assess the effectiveness of an RD treatment:

$$t' = \frac{\mu_1 - \mu_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}.$$

- Components:
 - > sample size (n)
 - > variation in prognosis between patients within a study arm (s)
 - > size of the average treatment effect (μ_1 - μ_2)
- These components are affected by the challenges presented earlier

Component 1: Sample size

- * A small source population makes it difficult to find sufficient patients
- The obvious solution is to increase the sample size
 - → **BUT:** The source population is small!
 - → AND: Difficulty in diagnosis (including lack of familiarity with RD, etc.) means false-positive and false-negative results
 - False-positive results lead to inclusion of patients in the study who do not have the disease → this will likely reduce the treatment effect
 - False-negative results will limit the pool of patients for inclusion

14

(13

Component 2: Variation in prognosis between patients

- Large disease prognosis heterogeneity means variation in outcome
- Solutions:
 - Include patients with a poorer prognosis (higher chance of the outcome of interest) using prognostic tests
 - → BUT:
 - a prognostic test may not exist or not be widely available
 - this selection will reduce the size of the source population
 - Increase the follow-up duration of the trial
 - → BUT: This will increase study costs and delay market access

Component 3: Size of the average treatment effect

15)

- Large variation in treatment effect due to heterogeneity of study population means a smaller average treatment effect if wide spectrum of patients are included in a study
- Solution (to improving the statistical power) is to include patients with a greater chance of treatment response, e.g. use "predictive tests" to identify patients who are likely to respond better
 - → BUT:
 - no such test may be available
 - this selection will reduce the size of the source population

Conclusions and policy consideration

17

- The different challenges need to be considered collectively.
- They can create a 'perfect storm' making it very difficult to obtain a precise estimate of the effectiveness (and cost-effectiveness) of a treatment.
- Challenges are only important if they prevent us from achieving our goals.
 - Adopt a more goal-oriented approach (not all challenges are equally relevant)
 - Primarily consider the criteria that policymakers use in reimbursement decision-making
- Multicriteria decision analysis (MCDA) has been suggested by many in the RD literature

Case study: Ataluren for Duchenne Muscular Dystrophy

EPOTO OF CONTRACT OF CONTRACT

Janis Clayton PTC Therapeutics, UK

Sheela Upadhyaya NICE, UK

Manufacturer vs. HTA perspective

Challenges:

Disease-related

- Evidence-related
- Process-related

Solutions:

- Short-term
- Mid-term
- Long-term

Conclusions and generalizable considerations

- Real-world evidence generation
- Holistic approaches to understanding RDs, drug development and evaluation
- Harmonisation of solutions across jurisdictions
- Limitations
- Etc.

(19)

Evaluation criteria, proposed by Hughes-Wilson et al., 2012

Criteria	Price Differential			
	Lower	Medium	Higher	
Rarity	1:2,000 - 1:20,000 or COMP figures > 3 in 10,000 (11%)	120,000 - 1200,000 or COMP figures 1-3 in 10,000 (51%)	Less than 1:200,000 or COMP figures les than 1 in 10,000 (38%)	
Level of research undertaken	Literature review	Building on previous existing knowledge	"Blue-sky" – starting research & development programme in an unknown area	
Level of uncertainty of effectiveness	Immature, but promising data	Appropriate surrogate end-points	Robust clinical end-points.	
Manufacturing complexity	Not complex – small molecule / classic galenic form	Moderately complex	Highly complex biological and galenic form	
Follow up measures (additional benefits and associated costs)	Moderate to none	Designed to answer specific, defined, delineated question	Safety and efficacy studies + size and duration of study	
Characteristics without direct co	st impact			
Disease severity	Morbidity	Monality / severe invalidity in adulthood	Montality / severe invalidity as infant	
Available alternatives / unmet medical need	Alternatives with similar characteristics	Alternatives – but offering strong innovation to the disease treatment.	No alternative	
Level of impact on condition / disease modification	Law	Medium	Strong	
Use in unique indication or not	Existing orphan or non-orphan indications for the same molecule*	Potential for multiple indications	Unique indication – no other use possible	

W.B. Another element could be the total revenues in the context of multiple indications for the same multicule owned by the same company.