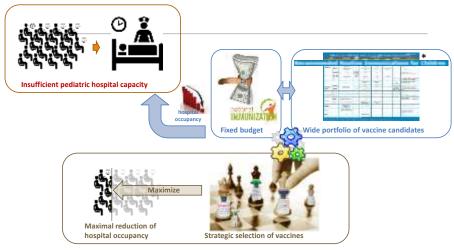
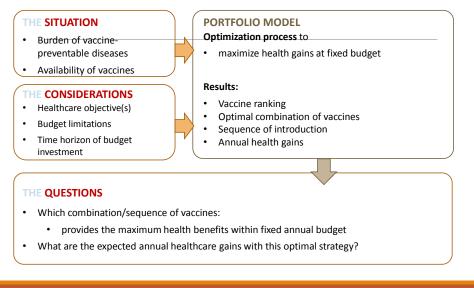

Application of Optimization Model in Vaccine Evaluation

SHARON ZHANG PH D DIRECTOR, EPIDEMIOLOGY AND HEALTH OUTCOMES, REGION INTERCONTINENTAL AND EMERGING MARKET EAST GSK VACCINES

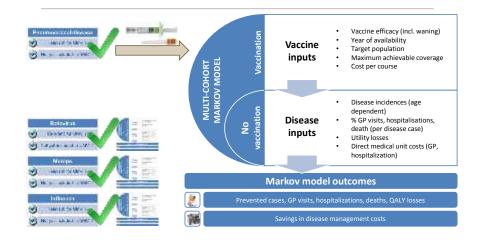

Disclaimer

- Full-time employee of GlaxoSmithKline
- •Adjunct Faculty member at National University of Singapore

OM: Knapsack Problem & Analogy in Health Care



Optimization: Health Goal and Constraint

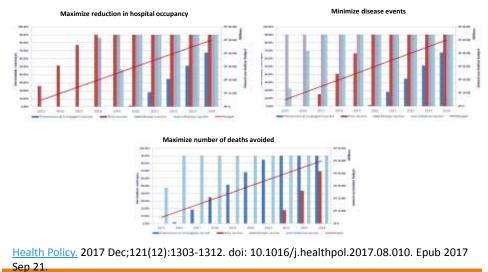


 $* WHO recommendations for routine immunization: {\it http://www.who.int/immunization/policy/Immunization_routine_table2.pdf$

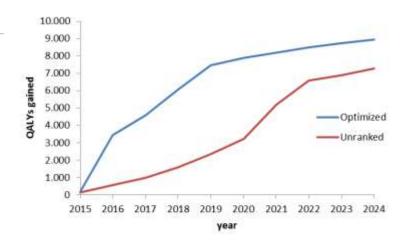
Running the PMV-model

Data inputs (illustration only)

Running the PMV


Example 1*: Optimize pediatric vaccine introduction in Japan based on health gains.

Rank	Single criterium					
	Cases	Medical visits	Hospital bed occupancy	Deaths avoided	DMC savings	QALYs
1 st	Mumps	Mumps	Rotavirus	Influenza	Mumps	Mumps
2 nd	Influenza	Rotavirus	Mumps	Pneumo	Rotavirus	Influenza
3 rd	Rotavirus	Pneumo	Influenza	Rotavirus	Pneumo	Rotavirus
4 th	Pneumo	Influenza	Pneumo	NA	Influenza	Pneumo


Ranking according to highest health gains in the objective function

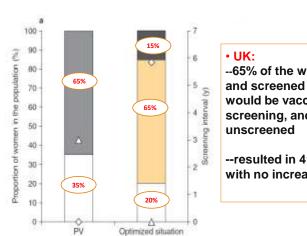
*. <u>Health Policy.</u> 2017 Dec;121(12):1303-1312. doi: 10.1016/j.healthpol.2017.08.010. Epub 2017 Sep 21.

Outcomes of PMV: combination and sequence of vaccines with increasing budget*

Comparison between PMV and no PMV on QALYs*

<u>Health Policy.</u> 2017 Dec;121(12):1303-1312. doi: 10.1016/j.healthpol.2017.08.010. Epub 2017 Sep 21.

Example 2:

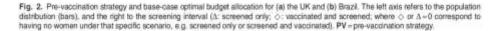

Selecting a Mix of Prevention Strategies against Cervical Cancer for Maximum Efficiency with an Optimization Program

Nadia Demarteau,¹ Thomas Breuer² and Baudouin Standaert¹

Key points for decision makers:

- Two cervical cancer (CC) prevention strategies exist: secondary (screening) and primary (HPV vaccination)
- Optimization models can be used to determine the optimal mix of primary and secondary
 prevention strategies minimizing CC burden under budget and logistic constraints
- Extending existing screening intervals while implementing vaccination in both the UK and Brazil could result in a substantial CC reduction while maintaining the current budget

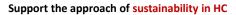
Pharmacoeconomics 2012, 30 (4): 337-358



Vaccination alone

- Vaccination and screening
- Screening alone
- No prevention strategy
- Screening interval vaccinated
- ∆ Screening interval unvaccinated

--65% of the women will be vaccinated and screened every 6 years, and 15% would be vaccinated with no screening, and 20% remain unscreened


--resulted in 41% more CC reduction with no increase in budget.

Conclusions

Optimization model is a powerful tool for decision makers with restricted budgets to maximize health gains.

It allows budget planning over time

14