Case study

Noemi Muszbek

Acknowledgement: Thitima Kongnakorn, Eszter Tichy, Zsofi Kiss

Aims

- To look at the potential roles of response in oncology in determining cost-effectiveness:
 - No role for response
 - Response influences utilities and disease management costs
 - Response influences survival curves, disease management costs and utilities
 - Response influences survival curves, <u>treatment discontinuation</u>, disease management costs and utilities and allows for response after progression
- To evaluate the influence of different inputs and assumptions on the choice of modelling approach

Model

- Comparators: Immuno-oncology (IO) vs. Chemotherapy
- Three structures in one model
 - Classic partitioned survival analysis (PartSA)
 - PartSA with response
 - PartSA with landmark analysis

What is DICE?

4

Inputs: Efficacy and Safety

- Based on a hypothetical patient level dataset
- Extrapolated (where appropriate) using single distributions: Weibull

	PartSA	PartSA with response	PartSA with landmark analyses
Survival	OS (overall)	OS (overall)	OS after response (adjusted UK general population mortality from 70)
			OS after no response
			OS (overall) used before landmark
Disease progression	PFS (overall)	PFS (overall)	Response at landmark (3 months)
		Time to response among responders	PFS after response
		Time in response among responders	PFS after no response
Safety	Probability of an AE	Probability of an AE	Probability of an AE

Extrapolated Overall Survival

Base Case Assumptions

- · Cycle length: one months
- HRs for IO vs. Chemotherapy
 - OS, PFS HRs after response and after no response assumed to be the same for OS (overall)
 - Time to response assumed to be the same for IO and Chemotherapy
- Until landmark point patients are assumed to be Stable
- Utilities
 - Utilities while progression-free, stable and in response assumed to be the same
 - After progression or loss of response utilities decrease
- Costs
 - Costs include: drug (initial and subsequent) and administration costs, monitoring costs, disease management, AE costs
 - Disease management costs while progression-free, stable and in response assumed to be the same
 - Costs after progression and loss of response assumed to be the same
 - Maximum treatment duration 24 months for IO, 6 months for Chemotherapy

Inputs	ю	Chemotherapy	
HR OS (overall, after response, after no response)#	0.247		
HR PFS (overall, after response, after no response) #	0.399		
HR Time in response among responders#	0.345		
Response at landmark (3 months) #	36%	18%	
Utility: Progression-free / Stable / In response*	0.76	0.76	
Utility: Progressed / No response*	0.70	0.70	
Drug costs (per cycle)*	£ 3,798	£ 2,540	
Subsequent drug and administration costs (total)**	£ 1,000	£ 4,500	
Administration costs (per cycle)*	£ 403	£ 0	
Disease management costs - Progression-free / Stable / In response (per cycle)*	£ 92	£ 92	
Disease management costs - Progressed (per cycle)*	£ 306	£ 306	
Time to treatment discontinuation (median) #	5.5 months	1.5 months	

Initial Inputs

Sources: "hypothetical patient cohort; *NICE STA 2017: Nivolumab for treated or metastatic renal cell carcinoma (utilities from everolimus); **Assumption

Base Case Results (Discounted)

	PartSA		PartSA with landmark		PatSA with response	
	ю	Chemo	ю	Chemo	10	Chemo
Total QALYs	1.12	0.26	1.74	0.39	1.12	0.26
Total costs	£34,268	£6,882	£ 35,921	£ 6,737	£ 34,268	£ 6,883
Drug acquisition costs	£ 30,452	£ 5,295	£ 31,819	£ 5,306	£ 30,452	£ 5,295
Drug administration costs	£ 3,231	£ 0	£ 3,376	£ 0	£ 3,231	£ 0
Monitoring costs	£ 256	£ 60	£ 428	£ 68	£ 257	£ 60
Disease management costs pre- progression / In response	£ 83	£ 19	£ 119	£ 37	£ 83	£ 19
Disease management costs post- progression / Not in response	£ 174	£ 41	£ 309	£ 31	£ 174	£ 41
Other costs	£ 328	£ 1,527	£ 298	£ 1,363	£ 328	£ 1,527
Incremental QALYs	0.	86	1.	.35	0.8	6
Incremental Costs	£27,386		£29,184		£27,385	
ICER	£ 31	,756	£ 21,678		£ 31,902	

Effect of Utilities/Costs

		Base case		Response Scenario		PFS Scenario	
Inputs		Utilities	Costs	Utilities	Costs	Utilities	Costs
Progression-free / Stable		0.76	£ 92	0.76	£ 200 🕇	0.76	£ 200 🕇
Stable		0.76	£ 92	0.72 🖊	£ 225 🔶	0.72 🖊	£ 225 懀
Progressed		0.70	£ 306	0.70	£ 250 🖊	0.40 🦊	£ 1,000
In response		0.76	£ 92	0.80 🔶	£50 棏	0.76	£ 200 懀
		QALYs	Costs	QALYs	Costs	QALYs	Costs
Denet C A	Incremental	0.86	£27,386	0.86	£27,437	0.73	£27,763
Partsa	ICER	£ 33	1,756	£ 31,815		£ 37,924	
PartSA with	Incremental	1.35	£29,184	1.31	£29,152	1.04	£29,919
<u>landmark</u>	ICER	£ 21,678		£ 22,179		£28,732	
PartSA with	Incremental	0.86	£27,385	0.80	£27,439	0.67	£27,777
response	ICER	£ 31,902		£ 34,421		£ 41,656	

Effect of Time in Response

- Scenarios: Time in response for IO same as for Chemotherapy and Response based utility and costs scenario
 - E.g. utility in response 0.80 (base case 0.76)

PartSA with Response	Base case	New scenario		
Incremental QALYs	0.86	0.79		
Incremental Costs	£27,385	£27,440		
ICER	£31,902	£34,691		

Effect of Response Inputs

- Scenarios for PartSA with landmark analysis
 - Response rate 22% vs. 18% (base case: 36% vs. 18%)
 - OS by response +/-10% OS overall (base case: adjusted general mortality)

Overall Survival with IO

Conclusion

- The historically common approach might not be the most appropriate
- With the use of IOs in oncology, the role of response needs to be considered
- Base the modelling approach on careful assessment of the
 - Therapeutic area
 - Mechanism of action of comparators
 - Data
 - Uncertainties
- To incorporate the effect of response of treatment discontinuation and the change in response over time, time to event structure is recommended